Edge-signed graphs with smallest eigenvalue greater than −2
نویسندگان
چکیده
منابع مشابه
Fat Hoffman graphs with smallest eigenvalue greater than -3
In this paper, we give a combinatorial characterization of the special graphs of fat Hoffman graphs containing K1,2 with smallest eigenvalue greater than −3, where K1,2 is the Hoffman graph having one slim vertex and two fat vertices.
متن کاملExceptional Graphs with Smallest Eigenvalue -2 and Related Problems
This paper summarizes the known results on graphs with smallest eigenvalue around -2 , and completes the theory by proving a number of new results, giving comprehensive tables of the finitely many exceptions, and posing some new problems. Then the theory is applied to characterize a class of distance-regular graphs of large diameter by their intersection array.
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملGraphs with smallest forgotten index
The forgotten topological index of a molecular graph $G$ is defined as $F(G)=sum_{vin V(G)}d^{3}(v)$, where $d(u)$ denotes the degree of vertex $u$ in $G$. The first through the sixth smallest forgotten indices among all trees, the first through the third smallest forgotten indices among all connected graph with cyclomatic number $gamma=1,2$, the first through<br /...
متن کاملThe smallest eigenvalue of Kr-free graphs
Let G be a Kr+1-free graph with n vertices and m edges, and let n (G) be the smallest eigenvalue of its adjacency matrix. We show that
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2015
ISSN: 0095-8956
DOI: 10.1016/j.jctb.2014.07.006